Dealing with Neural Networks¶
Bases: ABC
, LightningModule
, LoggerMixin
Base abstract class for Kit4DL modules.
Source code in kit4dl/nn/base.py
133 134 135 136 |
|
configure
abstractmethod
¶
Configure the architecture of the neural network.
Parameters¶
args: Any List of positional arguments to setup the network architecture *kwargs : Any List of named arguments required to setup the network architecture
Examples¶
def configure(self, input_dims, output_dims) -> None:
self.fc1 = nn.Sequential(
nn.Linear(input_dims, output_dims),
)
Source code in kit4dl/nn/base.py
142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
|
run_step
abstractmethod
¶
run_step(batch, batch_idx) -> tuple[Tensor, ...]
Carry out single train/validation/test step for the given batch
.
Return a tuple of two torch.Tensor
's: true labels and predicted scores.
If you need to define separate logic for validation or test step,
implement val_step
or test_step
methods, respectivelly.
Parameters¶
batch : torch.Tensor or tuple of torch.Tensor or list of torch.Tensor The output of the Dataloader batch_idx : int Index of the batch
Returns¶
result : tuple of torch.Tensor
A tuple of 2 or 3 items:
- if a tuple of 2 elements:
1. torch.Tensor
of ground-truth labels,
2. torch.Tensor
output of the network,
- if a tuple of 3 elements:
1. torch.Tensor
of ground-truth labels,
2. torch.Tensor
output of the network,
4. torch.Tensor
with loss value.
Examples¶
...
def run_step(self, batch, batch_idx) -> tuple[torch.Tensor, ...]:
feature_input, label_input = batch
scores = self(feature_input)
return (label_input, scores)
...
def run_step(self, batch, batch_idx) -> tuple[torch.Tensor, ...]:
feature_input, label_input = batch
scores = self(feature_input)
loss = super().compute_loss(prediction=logits, target=is_fire)
return (label_input, scores, loss)
Source code in kit4dl/nn/base.py
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
|
run_val_step ¶
run_val_step(batch, batch_idx) -> tuple[Tensor, ...]
Carry out single validation step for the given batch
.
Return a tuple of two torch.Tensor
's: true labels and predicted scores.
If you need to define separate logic for validation or test step,
implement val_step
or test_step
methods, respectivelly.
Parameters¶
batch : torch.Tensor or tuple of torch.Tensor or list of torch.Tensor The output of the Dataloader batch_idx : int Index of the batch
Returns¶
result : tuple of torch.Tensor
A tuple of 2 or 3 items:
- if a tuple of 2 elements:
1. torch.Tensor
of ground-truth labels,
2. torch.Tensor
output of the network,
- if a tuple of 3 elements:
1. torch.Tensor
of ground-truth labels,
2. torch.Tensor
output of the network,
4. torch.Tensor
with loss value.
Examples¶
...
def run_val_step(self, batch, batch_idx) -> tuple[torch.Tensor, ...]:
feature_input, label_input = batch
scores = self(feature_input)
return (label_input, scores)
...
def run_val_step(self, batch, batch_idx) -> tuple[torch.Tensor, ...]:
feature_input, label_input = batch
scores = self(feature_input)
loss = super().compute_loss(prediction=logits, target=is_fire)
return (label_input, scores, loss)
Source code in kit4dl/nn/base.py
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 |
|
run_test_step ¶
run_test_step(batch, batch_idx) -> tuple[Tensor, ...]
Carry out single test step for the given batch
.
Return a tuple of two torch.Tensor
's: true labels and predicted scores.
If you need to define separate logic for validation or test step,
implement val_step
or test_step
methods, respectivelly.
Parameters¶
batch : torch.Tensor or tuple of torch.Tensor or list of torch.Tensor The output of the Dataloader batch_idx : int Index of the batch
Returns¶
result : tuple of torch.Tensor
A tuple of 2 or 3items:
- if a tuple of 2 elements:
1. torch.Tensor
of ground-truth labels,
2. torch.Tensor
output of the network,
- if a tuple of 3 elements:
1. torch.Tensor
of ground-truth labels,
2. torch.Tensor
output of the network,
4. torch.Tensor
with loss value.
Examples¶
...
def run_test_step(self, batch, batch_idx) -> tuple[torch.Tensor, ...]:
feature_input, label_input = batch
scores = self(feature_input)
return (label_input, scores)
...
def run_test_step(self, batch, batch_idx) -> tuple[torch.Tensor, ...]:
feature_input, label_input = batch
scores = self(feature_input)
loss = super().compute_loss(prediction=logits, target=is_fire)
return (label_input, scores, loss)
Source code in kit4dl/nn/base.py
259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 |
|
run_predict_step ¶
run_predict_step(batch, batch_idx) -> Tensor
Carry out single predict step for the given batch
.
Return a torch.Tensor
- the predicted scores.
If not overriden, the implementation of step
method is used.
Parameters¶
batch : torch.Tensor or tuple of torch.Tensor or list of torch.Tensor The output of the Dataloader batch_idx : int Index of the batch
Returns¶
result : torch.Tensor The score being the output of of the network
Note¶
The function returns just score values as for prediction we do not have the ground-truth labels.
Examples¶
...
def run_predict_step(self, batch, batch_idx) -> torch.Tensor:
feature_input = batch
return self(feature_input)
Source code in kit4dl/nn/base.py
306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 |
|
compute_loss ¶
compute_loss(prediction: Tensor, target: Tensor) -> Tensor
Compute the loss based on the prediction and target.
Source code in kit4dl/nn/base.py
345 346 347 348 349 350 |
|
training_step ¶
training_step(batch, batch_idx)
Carry out a single training step.
Source code in kit4dl/nn/base.py
352 353 354 355 356 357 358 359 360 361 362 363 364 365 |
|
validation_step ¶
validation_step(batch, batch_idx)
Carry out a single validation step.
Source code in kit4dl/nn/base.py
367 368 369 370 371 372 373 374 375 376 377 378 379 380 |
|
test_step ¶
test_step(batch, batch_idx)
Carry out a single test step.
Source code in kit4dl/nn/base.py
382 383 384 385 386 387 388 389 390 391 392 393 |
|